G-2/230/21

Roll No.

M.Sc. II Semester Examination, 2021 **MATHEMATICS**

Paper I

(Advanced Abstract Algebra-II)

Time: 3 Hours

Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTION A

 $1 \times 10 = 10$

(Objective Type Questions)

Choose the correct answer:

- **1.** Which of the following statements is true:
 - (a) Every artinian ring is noetherian
 - (b) Every artinian module is noetherian
 - (c) In a noetherian ring every prime ideal is maximal
 - (d) Every noetherian ring is artinian
- **2.** If f be a homomorphism of a R-module M into R-module N, then f will be isomorphism if :
 - (a) $\ker f = \{0\}$
- (b) Img $f = \{0\}$
- (c) Img $f \neq (0)$
- (d) $\ker f \neq (0)$

P.T.O.

- **3.** A linear transformation $T \in A_F(v)$ for which $T^n =$ 0 for some positive n is called :
 - (a) Nilpotent
- (b) Cyclic
- (c) Both (a) and (b) (d) None is correct
- **4.** The characteristic and minimal polynomial for a linear operator Thave :
 - (a) Same roots
- (b) Different roots
- (c) Sometimes different and sometimes same
- (d) None of these
- **5.** Matrix *A* is Nilpotent of index *K*, then A^n , n > 1is also Nilpotent of index:
 - (a) k 1

- (b) k + 1
- (c) index $\leq k$
- (d) None of these
- **6.** Two Nilpotent linear transformation are similar if and only if they have:
 - (a) Same invariant
 - (b) Different invariant
 - (c) Non-equivalence relation
 - (d) Same-Antisymmetric Relation
- 7. If $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_{k-1}x^{k-1} + x^k$ be a monic polynomial over a field F, then companian matrix of f(x) is :
 - (a) $1 \times k$ matrix
- (b) $k \times 1$ matrix
- (c) $k \times k$ matrix
- (d) None of the above

G-2/230/21

- **8.** Let *A* be an $m \times n$ matrix over a principal ideal domain, then which of the following is correct :
 - (a) Row rank A = Column rank A
 - (b) Row rank A < Column rank A
 - (c) Row rank A >Column rank A
 - (d) None of these
- **9.** Let $T \in \operatorname{Hom}_F(V, V)$ if V as an F[x] module relative to T is cyclic, then V is called :
 - (a) *T*-cyclic space
- (b) *T*-simple space
- (c) T-subspace
- (d) T-invariant subspace
- **10.** Rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \end{bmatrix}$ is :
 - (a) 1

(b) 2

(c) 3

(d) None of these

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. If *M* is an *R* module and $x \in M$, then prove that the set $R_x = \{r_x : r \in R\}$ is an *R*-submodule of *M*.

Or

Prove that quotient module and Naetherian module is Noetherian.

G-2/230/21

P.T.O.

Unit-II

2. Prove that the minimal polynomial of a linear operator $T \in A$ (V) divides its characteristic polynomial.

Or

Let A be an algebra, with unit element over F and let dimension of A over F be m, then prove every element in A satisfies some non-trivial polynomial in F[x] of degree at most m.

Unit-III

3. Prove that a Jordan block J may be written as the sum of a scalar matrix and a Nilpotent.

Or

Prove that the matrix $A = \begin{bmatrix} -2 & 1 & 1 \\ -3 & 1 & 2 \\ -2 & 1 & 1 \end{bmatrix}$ is Nilpotent

Unit-IV

- **4.** If *R* is a *PID* and $a \in R$ is a unit, then prove that $\frac{R}{Ra} = (0).$
- G-2/230/21

and find its index.

Or

Show that the abelian group generated by x_1 and x_2 subject to $2x_1 = 0$, $3x_2 = 0$ is isomorphic to $\frac{Z_1}{(6)}$.

Unit-V

5. Find out the rational canonical form of the matrix whose invariant factors are (x-3), (x-3) (x-1), (x-3) $(x-1)^2$.

Or

Reduce the matrix $A = \begin{bmatrix} -3 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & -2 \end{bmatrix}$ into

rational canonical form.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Define free module and show that if M be a free R module with a basis $\{e_1, e_2,, e_n\}$, then $M \cong R^n$.

Or

Let R be a ring with unity. Show that an R

G-2/230/21

P.T.O.

module M is cyclic if and only if $M \cong \frac{R}{I}$ for some left ideal I of R.

Unit-II

2. Let $\lambda \in F$ be a characteristic root of $T \in A$ (V). Prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).

Or

Let the linear transformation $T \in A_F(V)$ be Nilpotent, then prove that $\alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_m T^m$ where $\alpha_i \in F$, $0 \le i \le m$ is invertible if $\alpha_0 \ne 0$.

Unit-III

3. If $u \in V_1$ is such that $u\Gamma^{n_1-k} = 0$, where 0 < k < n, then prove that $u = u_0 T^k$ for some $u_0 \in V_1$.

Or

Find the Jordan Canonical form of $\begin{bmatrix} 0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2 \end{bmatrix}$.

Unit-IV

4. Let *A* be an $(m \times n)$ matrix over *R* if

$$E_{ij} = 1 - e_{ii} - e_{jj} + e_{ij} + e_{ji}$$

then prove that $E_{ij}A$ is the matrix obtained from A be interchanging the i^{th} and j^{th} rows and E_{ij}^{-1} = E_{ii} .

G-2/230/21

[7]

Or

Find the rank of the subgroup of z^4 generated by the following list of elements (2, 3, 1, 4), (1, 2, 3, 0), (1, 1, 1, 4).

Unit-V

5. Let M be a finitely generated module over a principal ideal domain R, then prove that

$$M = F \oplus \text{Tor } M$$

where (i) $F \approx R^{S}$ for some non-negative integers,

(ii) Tor M = $\frac{R}{Ra_1} \oplus \frac{R}{Ra_2} \oplus \oplus \frac{R}{Ra_r}$ where a_i are non-zero non-unit element in R such that

 $|a_1|a_2|a_3....|a_r$

Or

Find the rational canonical form of the matrix \boldsymbol{A} over ϕ , where

$$A = \begin{bmatrix} 2 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 8 & 3 \end{bmatrix}.$$
